References and Notes
For reviews, see:
<A NAME="RG30810ST-1A">1a</A>
Nicolaou KC.
Bulger PG.
Sarlah D.
Angew. Chem. Int. Ed.
2005,
44:
4490
<A NAME="RG30810ST-1B">1b</A>
Handbook
of Metathesis
Vol. 1-3:
Grubbs RH.
Wiley-VCH;
Weinheim:
2003.
p.1234
<A NAME="RG30810ST-1C">1c</A>
Furstner A.
Angew.
Chem. Int. Ed.
2000,
39:
3012
<A NAME="RG30810ST-1D">1d</A>
Blechert S.
Connon SJ.
Angew. Chem. Int.
Ed.
2003,
42:
1900
<A NAME="RG30810ST-1E">1e</A>
Vernall AJ.
Abell
AD.
Aldrichimica
Acta
2003,
36:
93
<A NAME="RG30810ST-2A">2a</A>
Love JA.
Morgan JP.
Trnka TM.
Grubbs RH.
Angew. Chem. Int. Ed.
2002,
41:
4035
<A NAME="RG30810ST-2B">2b</A>
Garber SB.
Kingsbury JS.
Gray BL.
Hoveyda AH.
J.
Am. Chem. Soc.
2000,
122:
8168
<A NAME="RG30810ST-2C">2c</A>
Scholl M.
Ding S.
Choon WL.
Grubbs RH.
Org. Lett.
1999,
1:
953
<A NAME="RG30810ST-2D">2d</A>
Kingsbury
JS.
Harrity JPA.
Bonitatebus PJ.
Hoveyda AH.
J. Am. Chem. Soc.
1999,
121:
791
<A NAME="RG30810ST-2E">2e</A>
Schwab P.
France MB.
Ziller JW.
Grubbs RH.
Angew.
Chem., Int. Ed. Engl.
1995,
34:
2039
<A NAME="RG30810ST-3A">3a</A>
Michaut A.
Rodriguez J.
Angew.
Chem. Int. Ed.
2006,
45:
5740
<A NAME="RG30810ST-3B">3b</A>
Martin SF.
Deiters A.
Chem. Rev.
2004,
104:
2199
<A NAME="RG30810ST-3C">3c</A>
McReynolds MD.
Dougherty JM.
Hanson PRJM.
Chem. Rev.
2004,
104:
2239
<A NAME="RG30810ST-3D">3d</A>
van Otterlo WAL.
de Koning CB.
Chem. Rev.
2009,
109:
3743
<A NAME="RG30810ST-3E">3e</A>
Donohoe TJ.
Fishlock LP.
Procopiou PA.
Chem. Eur. J.
2008,
14:
5716
<A NAME="RG30810ST-4">4</A>
Donohoe TJ.
Orr AJ.
Bingham M.
Angew.
Chem. Int. Ed.
2006,
45:
2664 ;
and references cited therein
<A NAME="RG30810ST-5A">5a</A>
Bassindale MJ.
Hamley P.
Leitner A.
Harrity JPA.
Tetrahedron Lett.
1999,
40:
3247
<A NAME="RG30810ST-5B">5b</A>
Kinderman SS.
Doodeman R.
van Beijma JW.
Russcher JC.
Tjen
KCMF.
Kooistra TM.
Mohaselzadeh H.
van Maarseveen JH.
Hiemstra H.
Schoemaker HE.
Rutjes FPJT.
Adv. Synth. Catal.
2002,
344:
736
<A NAME="RG30810ST-6A">6a</A> During
the preparation of this manuscript, a related two-step approach
to substituted pyrroles via olefin cross meta-thesis and subsequent
acid-catalysed cyclisation was published by Donohoe et al., presenting
also an excellent example of the application of this methodology
towards the synthesis of the tetrasubstituted pyrrole subunit of Atorvastatin,
see:
Donohoe TJ.
Race NJ.
Bower JF.
Callens CKA.
Org. Lett.
2010,
12:
4094
<A NAME="RG30810ST-6B">6b</A>
Donohoe TJ.
Bower JF.
Proc.
Natl. Acad. Sci. U.S.A.
2010,
107:
3373
<A NAME="RG30810ST-6C">6c</A>
Krische MJ.
Proc. Natl. Acad. Sci. U.S.A.
2010,
107:
3279
<A NAME="RG30810ST-7">7</A>
Poulard C.
Cornet J.
Legoupy S.
Dujardin G.
Dhal R.
Huet F.
Lett. Org. Chem.
2009,
6:
359
<A NAME="RG30810ST-8">8</A>
Saito A.
Konishi T.
Hanzawa Y.
Org.
Lett.
2010,
12:
372 ; and
references cited therein
For selected examples of CM with
allyl amines, see:
<A NAME="RG30810ST-9A">9a</A>
Vedrenne E.
Dupont H.
Sabrina O.
Elkaïm L.
Grimaud L.
Synlett
2005,
670
<A NAME="RG30810ST-9B">9b</A>
Dewi P.
Blechert S.
Eur. J. Org. Chem.
2006,
1852
<A NAME="RG30810ST-9C">9c</A>
Gebauer J.
Dewi P.
Blechert S.
Tetrahedron
Lett.
2005,
46:
43
<A NAME="RG30810ST-9D">9d</A>
Chatterjee AK.
Choi T.-L.
Sanders DP.
Grubbs RH.
J.
Am. Chem. Soc.
2003,
125:
11360
<A NAME="RG30810ST-10">10</A>
Paulus O.
Alcaraz G.
Vaultier M.
Eur.
J. Org. Chem.
2002,
14:
2565
<A NAME="RG30810ST-11">11</A>
General procedure: All reactions were
performed using Schlenk techniques under an argon atmosphere. Solvents were
degassed (using Freeze-Pump-Thaw techniques) before
use. Metathesis catalysts and all commercially available chemicals
were used as received. See the Supporting Information for full experimental
procedures
and product characterisation data
<A NAME="RG30810ST-12">12</A>
Pyrrol-1-yl(1H-pyrrol-2-yl)methanone
(10z); Typical procedure: In a dry Schlenk
tube, substrate 10x (100 mg, 0.66 mmol),
B(OPh)3 (19 mg, 10 mol%) and crotonaldehyde (233
mg, 3.3 mmol) were dissolved in anhydrous toluene (5 mL) and stirred
for 5 min under an argon atmosphere. The first portion of the catalyst Hov-II (10.5 mg, 2.5 mol%) was added
as a solid. The reaction mixture was heated to reflux and, after
15 min, the second portion of the catalyst was added (10.5 mg, 2.5
mol%) under an argon atmosphere and heating was continued
until the reaction was complete according to TLC. The reaction mixture
was cooled and the solvent was evaporated. The crude product was
purified by flash chromatography (c-hexane-EtOAc,
19:1) to yield 10z as a colourless solid
(64.01 mg, 60%); Mp 56-58 ˚C. ¹H NMR
(500 MHz, CDCl3): δ = 6.36 (t, J = 2.30,
2.29 Hz, 2 H), 6.37-6.38 (m, 1 H),
6.98-6.99 (m, 1 H), 7.11-7.14 (m, 1 H),
7.52 (t, J = 2.29,
2.30 Hz, 2 H), 9.86 (br, 1 H). ¹³C NMR
(125 MHz, CDCl3): δ = 111.19, 112.71,
117.61, 120.65, 123.92, 124.95, 159.01. IR (KBr): 3306, 3158, 2958, 2924,
1645, 1545, 1467, 1456, 1424, 1412, 1389, 1345, 1277, 1244, 1138,
1108, 1099, 1074, 1042, 990, 941, 887, 864, 842, 766, 751, 728,
630, 604 cm-¹. MS (EI): m/z (%) = 160
(91) [M]+
˙
,
94 (100), 67 (48), 66 (28). HRMS (EI): m/z calcd for C9H8N2O:
160.06366; found: 160.06381. Anal. Calcd for C9H8N2O:
C, 67.49; H, 5.03; N, 17.49. Found: C, 67.44; H, 4.88; N, 17.57.
<A NAME="RG30810ST-13">13</A>
This work was presented for the first
time during the European Congress of Young Chemists ‘YoungChem 2009’,
Warsaw, Poland, October 14-18, 2009: ‘Ru catalyzed imine formation followed by RCM
of N- allylamines: A tandem
reaction towards the synthesis of substituted pyrroles’;
S. Shafi, oral presentation